Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
BMC Plant Biol ; 24(1): 324, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658831

RESUMEN

Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) significantly affects the production of cabbage and other cruciferous vegetables. Plant antioxidant system plays an important role in pathogen invasion and is one of the main mechanisms underlying resistance to biological stress. Therefore, it is important to study the resistance mechanisms of the cabbage antioxidant system during the early stages of Xcc. In this study, 108 CFU/mL (OD600 = 0.1) Xcc race1 was inoculated on "zhonggan 11" cabbage using the spraying method. The effects of Xcc infection on the antioxidant system before and after Xcc inoculation (0, 1, 3, and 5 d) were studied by physiological indexes determination, transcriptome and metabolome analyses. We concluded that early Xcc infection can destroy the balance of the active oxygen metabolism system, increase the generation of free radicals, and decrease the scavenging ability, leading to membrane lipid peroxidation, resulting in the destruction of the biofilm system and metabolic disorders. In response to Xcc infection, cabbage clears a series of reactive oxygen species (ROS) produced during Xcc infection via various antioxidant pathways. The activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased after Xcc infection, and the ROS scavenging rate increased. The biosynthesis of non-obligate antioxidants, such as ascorbic acid (AsA) and glutathione (GSH), is also enhanced after Xcc infection. Moreover, the alkaloid and vitamin contents increased significantly after Xcc infection. We concluded that cabbage could resist Xcc invasion by maintaining the stability of the cell membrane system and improving the biosynthesis of antioxidant substances and enzymes after infection by Xcc. Our results provide theoretical basis and data support for subsequent research on the cruciferous vegetables resistance mechanism and breeding to Xcc.


Asunto(s)
Antioxidantes , Brassica , Enfermedades de las Plantas , Xanthomonas campestris , Xanthomonas campestris/fisiología , Xanthomonas campestris/patogenicidad , Brassica/microbiología , Brassica/metabolismo , Antioxidantes/metabolismo , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo
2.
Food Chem X ; 22: 101306, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38550882

RESUMEN

Silicon can mitigate biotic and abiotic stresses in various plants; however, its effects on tomato quality under normal growth conditions are remain unclear. We used a randomized design with four Si treatments, CON (0 mmol/L), T1 (0.6 mmol/L), T2 (1.2 mmol/L), and T3 (1.8 mmol/L) on tomato fruit components Chlorogenic acid and rutin, among polyphenolic components, were increased by 56.99% and 20.31%, respectively, with T2 treatment compared to CON concentrations. T2 increased the sugar-acid ratio by 19.21%, compared to that with the CON treatment, and increased fruit Ca and Mg contents, compared to those with other treatments, improving the characteristic aroma. Furthermore, silicon application reduced the abscisic acid content by 112%, promoting ripening. Endogenous gibberellin, auxin, and salicylic acid, which retard fruit ripening and softening, were increased by 34.96%, 14.56%, and 35.21%, respectively. These findings have far-reaching implications for exogenous Si applications to enrich tomato nutritional and flavor qualities.

3.
Plants (Basel) ; 13(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38337916

RESUMEN

Melatonin plays a vital role in plant growth and development. In this study, we treated hydroponically grown tomato roots with various concentrations of exogenous melatonin (0, 10, 30, and 50 µmol·L-1). We utilized root scanning and microscopy to examine alterations in root morphology and cell differentiation and elucidated the mechanism by which melatonin regulates these changes through the interplay with endogenous hormones and relevant genes. The results showed that for melatonin at concentrations ranging between 10 and 30 µmol·L-1, the development of lateral roots were significantly stimulated, the root hair growth was enhanced, and biomass accumulation and root activity were increased. Furthermore, we elucidated that melatonin acts as a mediator for the expression of genes, such as SlCDKA1, SlCYCA3;1, SlARF2, SlF3H, and SlKT1, which are involved in the regulation of root morphology changes. Additionally, we observed that melatonin influences the levels of endogenous hormones, including ZT, GA3, IAA, ABA, and BR, which subsequently impact the root morphology development of tomato roots. In summary, this study shows that tomato root morphology can be promoted by the optimal concentration of exogenous melatonin (10-30 µmol·L-1).

4.
Plant Physiol Biochem ; 208: 108453, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38417309

RESUMEN

Hydrogen sulfide (H2S), as a potential gaseous signaling molecule, is involved in mediating biotic and abiotic stress in plants. Currently, there are no studies investigating the mechanism by which H2S improves photosynthesis under black rot (BR) stress caused by Xanthomonas campestris pv. Campestris (Xcc). In this study, we investigated the effect of exogenous H2S on Xcc induced photosynthetic impairment in cabbage seedlings. BR has an inhibitory effect on the photosynthetic ability of cabbage seedlings. Xcc infection can significantly reduce the chlorophyll content, photosynthetic characteristics, chlorophyll fluorescence, Calvin cycle related enzyme activity and gene expression in cabbage leaves. The use of H2S can alleviate this inhibitory effect, reduce chlorophyll decomposition, improve gas exchange, enhance the activity of Calvin cycle related enzymes, and increase the expression of related genes. Transcriptome analysis showed that all differential genes related to photosynthesis were up regulated under H2S treatment compared to normal inoculation. Therefore, spraying exogenous H2S can improve the photosynthetic capacity of cabbage seedlings, reduce Xcc induced photoinhibition, and improve plant resistance.


Asunto(s)
Brassica , Sulfuro de Hidrógeno , Brassica/metabolismo , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Fotosíntesis , Clorofila/metabolismo , Plantones/metabolismo
5.
Foods ; 13(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38254524

RESUMEN

Research on silicon (Si), an element considered beneficial for plant growth, has focused on abiotic and biotic stress mitigation. However, the effect of Si on tomato fruit quality under normal growth conditions remains unclear. This study investigated the effects of applying different levels of Si (0 mmol·L-1 [CK], 0.6 mmol·L-1 [T1], 1.2 mmol·L-1 [T2], and 1.8 mmol·L-1 [T3]) in foliar sprays on tomato fruit quality cultivated in substrates, and the most beneficial Si level was found. Compared to CK, exogenous Si treatments had a positive influence on the appearance and nutritional quality of tomato fruits at the mature green, breaker, and red ripening stages. Of these, T2 treatment significantly increased peel firmness and single-fruit weight in tomato fruits. The contents of soluble sugars, soluble solids, soluble proteins, and vitamin C were significantly higher, and the nitrate content was significantly lower in the T2 treatment than in the CK treatment. Cluster analysis showed that T2 produced results that were significantly different from those of the CK, T1, and T3 treatments. During the red ripening stage, the a* values of fruits in the T2 treatment tomato were significantly higher than those in the other three treatments. Moreover, the lycopene and lutein contents of the T2 treatment increased by 12.90% and 17.14%, respectively, compared to CK. T2 treatment significantly upregulated the relative gene expression levels of the phytoene desaturase gene (PDS), the lycopene ε-cyclase gene (LCY-E), and the zeaxanthin cyclooxygenase gene (ZEP) in the carotenoid key genes. The total amino acid content in tomato fruits in the T2 treatment was also significantly higher than that of CK. In summary, foliar spraying of 1.2 mmol·L-1 exogenous Si was effective in improving the appearance and nutritional quality of tomato fruits under normal growth conditions. This study provides new approaches to further elucidate the application of exogenous silicon to improve tomato fruit quality under normal conditions.

6.
BMC Plant Biol ; 23(1): 649, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38102554

RESUMEN

BACKGROUND: Brassinolide, known as the seventh plant hormone, can improve the photosynthetic capacity of plants, promote plant growth and development, promote the formation of horticultural crop yield, improve the quality of horticultural crops, and also improve the ability of plants to resist biological and abiotic stresses. RESULTS: The effects of different concentrations of exogenously sprayed 2,4-epibrassinolide (EBR) on growth, physiological and photosynthetic characteristics of 'All-round large leaf coriander' were studied in substrate culture. The results showed that 0.05, 0.1, and 0.5 mg.L- 1 EBR promoted the growth of coriander and increased the aboveground fresh and dry weights, with 0.5 mg.L- 1 EBR having the most significant effect. Spraying 0.1 mg.L- 1 EBR increased the content of soluble sugars and protein of coriander leaves. Spraying 0.1 and 0.5 mg.L- 1 EBR significantly increased the chlorophyll content and photosynthetic parameters of coriander leaves, and 0.5 mg.L- 1 EBR also significantly increased the chlorophyll fluorescence parameters of coriander leaves. Spraying 0.5 mg.L- 1 EBR upregulated the expression of CsRbcS, CsFBPase, and CsAld. Correlation analysis showed that aboveground fresh weight under exogenous EBR treatment was significantly positively correlated with aboveground dry weight, plant height, Pn, Gs, Ci, and CsAld (P < 0.05), and soluble sugar content was significantly positively correlated with the number of leaves, Y(II), qP, and CsRbcS. The results of the principal component analysis (PCA) showed that there was a significant separation between the treatment and the control groups. Spraying 0.5 mg.L- 1 EBR can promote the growth of coriander, improve the quality of coriander leaves, and strengthen coriander leaf photosynthetic capacity. This study provides new insights into the promotion of coriander growth and development following the application of exogenous EBR. CONCLUSION: Exogenous EBR treatment increased coriander plant height, leaf growth and aboveground dry weight, and enhanced photosynthesis. Exogenous spraying of 0.5 mg.L- 1 EBR had the most significant effect.


Asunto(s)
Coriandrum , Fotosíntesis , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Clorofila/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Antioxidantes/metabolismo , Hojas de la Planta/metabolismo
7.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958744

RESUMEN

Drought stress restricts vegetable growth, and abscisic acid plays an important role in its regulation. Sucrose non-fermenting1-related protein kinase 2 (SnRK2) is a key enzyme in regulating ABA signal transduction in plants, and it plays a significant role in response to multiple abiotic stresses. Our previous experiments demonstrated that the SnRK2.11 gene exhibits a significant response to drought stress in cucumbers. To further investigate the function of SnRK2.11 under drought stress, we used VIGS (virus-induced gene silencing) technology to silence this gene and conducted RNA-seq analysis. The SnRK2.11-silencing plants displayed increased sensitivity to drought stress, which led to stunted growth and increased wilting speed. Moreover, various physiological parameters related to photosynthesis, chlorophyll fluorescence, leaf water content, chlorophyll content, and antioxidant enzyme activity were significantly reduced. The intercellular CO2 concentration, non-photochemical burst coefficient, and malondialdehyde and proline content were significantly increased. RNA-seq analysis identified 534 differentially expressed genes (DEGs): 311 were upregulated and 223 were downregulated. GO functional annotation analysis indicated that these DEGs were significantly enriched for molecular functions related to host cells, enzyme activity, and stress responses. KEGG pathway enrichment analysis further revealed that these DEGs were significantly enriched in phytohormone signalling, MAPK signalling, and carotenoid biosynthesis pathways, all of which were associated with abscisic acid. This study used VIGS technology and transcriptome data to investigate the role of CsSnRK2.11 under drought stress, offering valuable insights into the mechanism of the SnRK2 gene in enhancing drought resistance in cucumbers.


Asunto(s)
Cucumis sativus , Resistencia a la Sequía , Cucumis sativus/genética , Cucumis sativus/metabolismo , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Sequías , Estrés Fisiológico/genética , Clorofila/metabolismo , Antioxidantes/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Int J Mol Sci ; 24(19)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37834435

RESUMEN

The ultrasonic cell disruption method was used to efficiently extract isothiocyanates and other volatile compounds from radish microgreens. A total of 51 volatiles were identified and quantified by headspace solid-phase micro-extraction and gas chromatography-mass spectrometry (HS-SPME/GC-MS) in four radish microgreen cultivars, mainly including alcohols, aldehydes, isothiocyanates, sulfides, ketones, esters, terpenes, and hydrocarbons. The correlation between cultivars and volatile compounds was determined by chemometrics analysis, including principal component analysis (PCA) and hierarchical clustering heat maps. The aroma profiles were distinguished based on the odor activity value (OAV), odor contribution rate (OCR), and radar fingerprint chart (RFC) of volatile compounds. This study not only revealed the different flavor characteristics in four cultivars but also established a theoretical basis for the genetic improvement of radish microgreen flavors.


Asunto(s)
Raphanus , Compuestos Orgánicos Volátiles , Microextracción en Fase Sólida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Ultrasonido , Compuestos Orgánicos Volátiles/análisis , Odorantes/análisis , Isotiocianatos/análisis
9.
Food Chem X ; 19: 100756, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780342

RESUMEN

Water deficit (WD) irrigation techniques to improve water use efficiency have been rapidly developed. However, the effect of WD irrigation on tomato quality has not been sufficiently studied. Here, we investigated the effects of varying water irrigation levels [T1-T4: 80%, 65%, 55%, and 45% of maximum field moisture capacity (FMC)] and full irrigation (CK: 90% of maximum FMC) on tomato fruits from the mature-green to red-ripening stages, to compare the nutritional and flavour qualities of the resulting tomatoes. The proline, aspartic, malic, citric, and ascorbic acid contents increased, phenylalanine and glutamic acid contents decreased, and the total amino and organic acid contents increased by 18.91% and 26.12%, respectively, in T2-treated fruits. Furthermore, the T2-treated fruits exhibited higher K and P contents alongside improved characteristic aromas. These findings provide novel insights for further improvements in tomato quality while also developing water-saving irrigation techniques.

10.
PLoS One ; 18(8): e0289772, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37566624

RESUMEN

Cucumber is an important cash crop; however, continuous cropping obstacles readily occur within the intensive production processes of facility horticulture. This study aimed to determine the effects of continuous cropping on soil quality and the microbial community in the rhizosphere soil of cucumbers. Rhizosphere soil of cucumber planted continuously for 4, 8, and 12 years was investigated, and soil that was not continuously planted was used as the control. Soil physicochemical properties, enzyme activity, microbial diversity, and richness were determined. The results showed that with the increase in continuous cropping years (0, 4, 8, and 12 years), soil total salt content continuously increased, while the pH value significantly decreased. Compared with the control, soil organic matter, alkali-hydrolyzed nitrogen, available phosphorus, available potassium, and nitrate nitrogen contents increased significantly after 4 and 8 years of continuous cropping. Spearman correlation analysis showed that pH was negatively correlated with sucrase or sucrose and available phosphorus was positively correlated with alkaline phosphatase. Compared with the control, the diversity and abundance of bacterial and fungal communities in cucumber rhizosphere soil decreased after 4 and 12 years of continuous cropping. Continuous cropping led to a significant increase in the richness of the dominant phylum of cucumber rhizosphere soil. Principal coordinates analysis showed that, compared with the control, the soil microbial community structure was significantly separated after 4, 8, and 12 years of continuous cropping, and the microbial community structure was most similar after 4 and 8 years of continuous cropping. In addition, redundancy analysis showed that pH was the main driver of soil microbial dominance. In conclusion, continuous cropping of cucumber along the Yellow River irrigation area has led to the deterioration of soil nutrients and microbial communities in that region. This experiment provides a theoretical foundation for addressing the challenges associated with continuous cropping in cucumber cultivation.


Asunto(s)
Cucumis sativus , Microbiota , Suelo/química , Ríos , Microbiología del Suelo , Rizosfera
11.
Plants (Basel) ; 12(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37447010

RESUMEN

Hydrogen sulfide (H2S) is involved in the regulation of plant salt stress as a potential signaling molecule. This work investigated the effect of H2S on cucumber growth, photosynthesis, antioxidation, ion balance, and other salt tolerance pathways. The plant height, stem diameter, leaf area and photosynthesis of cucumber seedlings were significantly inhibited by 50 mmol·L-1 NaCl. Moreover, NaCl treatment induced superoxide anion (O2·-) and Na+ accumulation and affected the absorption of other mineral ions. On the contrary, exogenous spraying of 200 µmol·L-1 sodium hydrosulfide (NaHS) maintained the growth of cucumber seedlings, increased photosynthesis, enhanced the ascorbate-glutathione cycle (AsA-GSH), and promoted the absorption of mineral ions under salt stress. Meanwhile, NaHS upregulated SOS1, SOS2, SOS3, NHX1, and AKT1 genes to maintain Na+/K+ balance and increased the relative expression of MAPK3, MAPK4, MAPK6, and MAPK9 genes to enhance salt tolerance. These positive effects of H2S could be reversed by 150 mmol·L-1 propargylglycine (PAG, a specific inhibitor of H2S biosynthesis). These results indicated that H2S could mitigate salt damage in cucumber, mainly by improving photosynthesis, enhancing the AsA-GSH cycle, reducing the Na+/K+ ratio, and inducing the SOS pathway and MAPK pathway.

12.
J Environ Manage ; 341: 117941, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37178544

RESUMEN

Treatment of the planting and breeding waste is becoming a big issue due to their significant quantities. Composting could be an effective alternative for planting and breeding waste management which could be used as fertilizer. The purpose of this research was to evaluate the effect of planting and breeding waste on baby cabbage growth and soil properties, to establish a suitable agricultural cycle model for semi-arid area in central Gansu Province. The planting and breeding wastes [sheep manure (SM), tail vegetable (TV), cow manure (CM), mushroom residue (MR) and corn straw (CS)] were used as the raw materials in this study, which were designed 8 compost formulas for composting fermentation. With no fertilization (CK1) and local commercial organic fertilizer (CK2) as the control, the comprehensive evaluation of planting and breeding waste composts on the yield of baby cabbage, fertilizer utilization rate, soil physical and chemical properties and microbial diversity were studied to select the best compost formula suitable for the growth of baby cabbage. And the material flow and energy flow analysis of the circulation model established by the formula were carried out. The results showed that the biological yield and economic yield of baby cabbage, absorption and recycling utilization of total phosphorus (TP) and total potassium (TK) reached the maximum under the formula of SM: TV: MR: CS = 6:2:1:1. Compared with CK2, the formula of SM: TV: MR: CS = 6:2:1:1 significantly increased the richness of soil bacteria and beneficial bacteria Proteobacteria, and decreased the relative abundance of harmful bacteria Olpidiomycota. Principal component analysis showed the comprehensive score of SM: TV: MR: CS = 6:2:1:1 was the best organic compost formula suitable for producing high-quality and high-yield baby cabbage and improving soil environment. Therefore, this formula can be used as a reference organic fertilizer formula for field cultivation of baby cabbage.


Asunto(s)
Brassica , Compostaje , Bovinos , Femenino , Animales , Ovinos , Suelo/química , Estiércol , Fertilizantes , Fitomejoramiento , Nutrientes
13.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108434

RESUMEN

Low-light intensity affects plant growth and development and, finally, causes a decrease in yield and quality. There is a need for improved cropping strategies to solve the problem. We previously demonstrated that moderate ammonium:nitrate ratio (NH4+:NO3-) mitigated the adverse effect caused by low-light stress, although the mechanism behind this alleviation is unclear. The hypothesis that the synthesis of nitric oxide (NO) induced by moderate NH4+:NO3- (10:90) involved in regulating photosynthesis and root architecture of Brassica pekinesis subjected to low-light intensity was proposed. To prove the hypothesis, a number of hydroponic experiments were conducted. The results showed that in plants exposed to low-light intensity, the exogenous donors NO (SNP) and NH4+:NO3- (N, 10:90) treatments significantly increased leaf area, growth range, and root fresh weight compared with nitrate treatment. However, the application of hemoglobin (Hb, NO scavenger), N-nitro-l-arginine methyl ester (L-NAME, NOS inhibitor), and sodium azide (NaN3, NR inhibitor) in N solution remarkably decreased the leaf area, canopy spread, the biomass of shoot and root, the surface area, and volume and tips of the root. The application of N solution and exogenous SNP significantly enhanced Pn (Net photosynthetic rate) and rETR (relative electron transport rates) compared with solo nitrate. While all these effects of N and SNP on photosynthesis, such as Pn, Fv/Fm (maximum quantum yield of PSII), Y(II) (actual photosynthetic efficiency), qP (photochemical quenching), and rETR were reversed when the application of Hb, L-NAME, and NaN3 in N solution. The results also showed that the N and SNP treatments were more conducive to maintaining cell morphology, chloroplast structure, and a higher degree of grana stacking of low-light treated plants. Moreover, the application of N significantly increased the NOS and NR activities, and the NO levels in the leaves and roots of mini Chinese cabbage seedlings treated with N were significantly higher than those in nitrate-treated plants. In conclusion, the results of this study showed that NO synthesis induced by the appropriate ammonia-nitrate ratio (NH4+:NO3- = 10:90) was involved in the regulation of photosynthesis and root structure of Brassica pekinesis under low-light stress, effectively alleviating low-light stress and contributing to the growth of mini Chinese cabbage under low-light stress.


Asunto(s)
Compuestos de Amonio , Brassica , Nitratos/farmacología , Óxido Nítrico/farmacología , NG-Nitroarginina Metil Éster/farmacología , Fotosíntesis , Plantones , Compuestos de Amonio/farmacología , Hojas de la Planta , Raíces de Plantas , Nitrógeno/farmacología
14.
Microorganisms ; 11(4)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37110447

RESUMEN

Composting, planting, and breeding waste for return to the field is the most crucial soil improvement method under the resource utilization of agricultural waste. However, how the vegetable yield and rhizosphere soil environment respond to different composts is still unknown. Therefore, eight formulations were designed for compost fermentation using agricultural waste [sheep manure (SM), tail vegetable (TV), cow manure (CM), mushroom residue (MR), and corn straw (CS)] without fertilizer (CK1) and local commercial organic fertilizer (CK2) as controls to study the yield and rhizosphere soil environment of greenhouse zucchini in response to different planting and breeding waste compost. Applying planting and breeding waste compost significantly increased the soil's organic matter and nutrient content. It inhibited soil acidification, which T4 (SM:TV:CS = 6:3:1) and T7 (SM:TV:MR:CS = 6:2:1:1) treatments affected significantly. Compared to CK2 treatment, T4 and T7 treatments showed a greater increase, with a significant increase of 14.69% and 11.01%, respectively. Therefore, T4, T7, and two control treatments were selected for high-throughput sequencing based on yield performance. Compared with the CK1 treatment, although multiple applications of chemical fertilizers led to a decrease in bacterial and fungal richness, planting and breeding waste compost maintained bacterial diversity and enhanced fungal diversity. Compared to CK2, the relative abundance increased in T7-treated Proteobacteria (Sphingomonas, Pseudomonas, and Lysobacter) and T4-treated Bacteroidetes (Flavobacterium) among bacteria. An increase in T4-treated Ascomycota (Zopfiella and Fusarium) and Basidiomycota among fungi and a decrease in T7-treated Mortierellomycota have been observed. Functional predictions of the bacterial Tax4Fun and fungal FUNGuild revealed that applying planting and breeding waste compost from the T4 treatment significantly increased the abundance of soil bacterial Metabolism of Cities, Genetic Information Processing, and Cellular Processes decreased the abundance of Pathotroph and Saprotroph-Symbiotroph fungi and increased the abundance of Saprotroph fungi. Overall, planting and breeding waste compost increased zucchini yield by improving soil fertility and microbial community structure. Among them, T4 treatment has the most significant effect, so T4 treatment can be selected as the optimized formulation of local commercial organic fertilizer. These findings have valuable implications for sustainable agricultural development.

15.
BMC Plant Biol ; 23(1): 214, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095428

RESUMEN

BACKGROUND: BRASSINAZOLE-RESISTANT (BZR) is a class of specific transcription factor (TFs) involved in brassinosteroid (BR) signal transduction. The regulatory mechanism of target genes mediated by BZR has become one of the key research areas in plant BR signaling networks. However, the functions of the BZR gene family in cucumber have not been well characterized. RESULTS: In this study, six CsBZR gene family members were identified by analyzing the conserved domain of BES1 N in the cucumber genome. The size of CsBZR proteins ranges from 311 to 698 amino acids and are mostly located in the nucleus. Phylogenetic analysis divided CsBZR genes into three subgroups. The gene structure and conserved domain showed that the BZR genes domain in the same group was conserved. Cis-acting element analysis showed that cucumber BZR genes were mainly involved in hormone response, stress response and growth regulation. The qRT-PCR results also confirmed CsBZR response to hormones and abiotic stress. CONCLUSION: Collectively, the CsBZR gene is involved in regulating cucumber growth and development, particularly in hormone response and response to abiotic stress. These findings provide valuable information for understanding the structure and expression patterns of BZR genes.


Asunto(s)
Cucumis sativus , Cucumis sativus/genética , Genoma de Planta , Filogenia , Brasinoesteroides/metabolismo , Familia de Multigenes , Hormonas/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética
16.
Ecotoxicol Environ Saf ; 251: 114534, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36646009

RESUMEN

Mini Chinese cabbage (Brassica rapa L. ssp. Pekinensis) plays an important role in the supply of summer vegetables on the plateau in western China. In recent years, tip-burn has seriously affected the yield, quality and commodity value of mini Chinese cabbage. Calcium (Ca2+) deficiency is a key inducer of tip-burn. As a new type plant hormone, brassinolide (BR) is involved in regulating a variety of biotic and abiotic stresses. To explore the alleviation role of BR in tip-burn caused by Ca2+ deficiency, a hydroponic experiment was conducted to study the relationship between BR and Ca2+ absorption and transport. The results showed that foliar spraying with 0.5 µM BR significantly reduced tip-burn incidence rate and disease index of mini Chinese cabbage caused by Ca2+ deficiency. Moreover, the dynamic monitoring results of tip-burn incidence rate showed that the value reached the highest on the ninth day after treatment. BR promoted the Ca2+ transport from roots to shoots and from outer leaves to inner leaves by increasing the activities of Ca2+-ATPase and H+-ATPase as well as the total ATP content, which provided power for Ca2+ transport. In addition, exogenous BR upregulated the relative expression levels of BrACA4, BrACA11, BrECA1, BrECA3, BrECA4, BrCAX1, BrCAS and BrCRT2, whereas Ca2+ deficiency induced down-regulation. In conclusion, exogenous BR can alleviate the Ca2+-deficiency induced tip-burn of mini Chinese cabbage by promoting the transport and distribution of Ca2+.


Asunto(s)
Brassica rapa , Brassica , Brassica rapa/metabolismo , Calcio/metabolismo , Brasinoesteroides/farmacología , Perfilación de la Expresión Génica , Brassica/metabolismo , Regulación de la Expresión Génica de las Plantas
17.
Foods ; 12(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36613420

RESUMEN

Sodium chloride (NaCl), as a eustressor, can trigger relevant pathways to cause plants to produce a series of metabolites, thus improving the quality of crops to a certain extent. However, there are few reports on the improvement of nutrient quality and flavor of hydroponic Chinese chives (Allium tuberosum Rottler) by sodium chloride. In this study, five NaCl concentrations were used to investigate the dose-dependent effects on growth, nutritional quality and flavor in Chinese chives. The results show that 10 mM NaCl had no significant effect on the growth of Chinese chives, but significantly decreased the nitrate content by 40% compared with 0 mM NaCl treatment, and the content of soluble protein and vitamin C was increased by 3.6% and 2.1%, respectively. In addition, a total of 75 volatile compounds were identified among five treatments using headspace solid-phase microextraction gas chromatography/mass spectrometry (HS-SPME/GC-MS). Compared with the 0 mM NaCl treatment, 10 mM NaCl had the greatest effect on the quantity and content of volatile compounds, with the total content increased by 27.8%. Furthermore, according to the odor activity values (OAVs) and odor description, there were 14 major aroma-active compounds (OAVs > 1) in Chinese chives. The "garlic and onion" odor was the strongest among the eight categories of aromas, and its highest value was observed in the 10 mM NaCl treatment (OAVs = 794).Taken together, adding 10 mM NaCl to the nutrient solution could improve the nutritional quality and flavor of Chinese chives without affecting their normal growth.

18.
Front Plant Sci ; 14: 1323048, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38186602

RESUMEN

The content and proportion of sugars and acids in tomato fruit directly affect its flavor quality. Previous studies have shown that 5-aminolevulinic acid (ALA) could promote fruit ripening and improve its aroma quality. In order to explore the effect of ALA on sugar and acid quality during tomato fruit development, 0, 100, and 200 mg L-1 ALA solutions were sprayed on the fruit surface 10 days after pollination of the fourth inflorescence, and the regulation of ALA on sugar, acid metabolism and flavor quality of tomato fruit was analyzed. The results showed that ALA treatment could enhance the activities of acid invertase (AI), neutral invertase (NI), and sucrose synthase (SS), reduce the activity of sucrose phosphate synthase (SPS), up-regulate the expression of SlAI, SlNI and SlSS, change the composition and content of sugar in tomato fruit at three stages, significantly increase the content of sugars in fruit, and promote the accumulation of sugars into flesh. Secondly, ALA treatments increased the activities of phosphoenolpyruvate carboxykinase (PEPC), malic enzyme (ME), and citrate synthase (CS), up-regulated the expression of SlPPC2, SlME1, and SlCS, and reduced the citric acid content at maturity stage, thereby reducing the total organic acid content. In addition, ALA could also increase the number and mass fraction of volatile components in mature tomato fruits. These results indicated that exogenous application of ALA during tomato fruit development could promote the formation of fruit aroma quality and were also conducive to the formation of fruit sugar and acid quality.

19.
Sensors (Basel) ; 24(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38203005

RESUMEN

Growing pumpkins in controlled environments, such as greenhouses, has become increasingly important due to the potential to optimise yield and quality. However, achieving optimal environmental conditions for pumpkin cultivation requires precise monitoring and control, which can be facilitated by modern sensor technologies. The objective of this study was to determine the optimal placement of sensors to determine the influence of external parameters on the maturity of pumpkins. The greenhouse used in the study consisted of a plastic film for growing pumpkins. Five different sensors labeled from A1 to A5 measured the air temperature, humidity, soil temperature, soil humidity, and illumination at five different locations. We used two methods, error-based sensor placement and entropy-based sensor placement, to evaluate optimisation. We selected A3 sensor locations where the monitored data were close to the reference value, i.e., the average data of all measurement locations and parameters. Using this method, we selected sensor positions to monitor the influence of external parameters on the maturity of pumpkins. These methods enable the determination of optimal sensor locations to represent the entire facility environment and detect areas with significant environmental disparities. Our study provides an accurate measurement of the internal environment of a greenhouse and properly selects the base installation locations of sensors in the pumpkin greenhouse.


Asunto(s)
Cucurbita , Entropía , Ambiente Controlado , Humedad , Suelo
20.
Front Plant Sci ; 13: 999051, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570895

RESUMEN

Tip-burn has seriously affected the yield, quality and commodity value of mini Chinese cabbage. Calcium (Ca2+) deficiency is the main cause of tip-burn. In order to investigate whether exogenous brassinosteroids (BRs) can alleviate tip-burn induced by calcium (Ca2+) deficiency and its mechanism, in this study, Ca2+ deficiency in nutrient solution was used to induced tip-burn, and then distilled water and BRs were sprayed on leaves to observe the tip-burn incidence of mini Chinese cabbage. The tip-burn incidence and disease index, leaf area, fluorescence parameters (Fv/Fm, NPQ, qP andφPSII) and gas exchange parameters (Tr, Pn, Gs and Ci), pigment contents, cell wall components, mesophyll cell ultrastructure and the expression of genes related to chlorophyll degradation were measured. The results showed that exogenous BRs reduced the tip-burn incidence rate and disease index of mini Chinese cabbage, and the tip-burn incidence rate reached the highest on the ninth day after treatment. Exogenous BRs increased the contents of cellulose, hemifiber, water-soluble pectin in Ca2+ deficiency treated leaves, maintaining the stability of cell wall structure. In addition, BRs increased photosynthetic rate by increasing the activities of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and fructose 1,6-bisphosphatase (FBPase) related to Calvin cycle, maintaining relatively complete chloroplast structure and higher chlorophyll content via down-regulating the expression of BrPPH1 and BrPAO1 genes related to chlorophyll degradation. In conclusion, exogenous BRs alleviated calcium deficiency-induced tip-burn by maintaining cell wall structural stability and higher photosynthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...